Correspondence

The fast and forceful kicking strike of the secretary bird

Steven J. Portugal^{1,*}, Campbell P. Murn^{2,3}, Emily L. Sparkes⁴, and Monica A. Daley⁴

The study of animal locomotion has uncovered principles that can be applied to bio-inspired robotics, prosthetics and rehabilitation medicine, while also providing insight into musculoskeletal form and function [1-4]. In particular, study of extreme behaviors can reveal mechanical constraints and trade-offs that have influenced evolution of limb form and function [1,2]. Secretary birds (Sagittarius serpentarius; Figure 1A) are large terrestrial birds of prey endemic to sub-Saharan Africa, which feed on snakes, lizards and small mammals [5]. They frequently kick and stamp on the prey's head until it is killed or incapacitated, particularly when dispatching larger lizards and venomous snakes [5]. The consequences of a missed strike when hunting venomous snakes can be deadly [5], so the kicking strikes of secretary birds require fast yet accurate neural control. Delivery of fast, forceful and accurate foot strikes that are sufficient to stun and kill prey requires precision targeting, demanding a high level of coordination between the visual and neuromuscular systems.

We measured kicking strikes from Madeleine, a 24-year old male secretary bird held in the collection at the Hawk Conservancy Trust (Figure 1A), and trained to aggressively strike a rubber snake for public exhibition displays (Movie S1). Madeleine's mass was 3.96 kg, with a standing hip height of 69.2 cm. Unlike most raptors, secretary birds do not exhibit sexual dimorphism, and this body mass is near the average of secretary birds measured in the field in South Africa (see Supplemental Information).

Strike force impulse and contact duration (Figure 1B) were measured

Figure 1. The strike force of the secretary bird.

(A) Madeleine, a 24-year old secretary bird (3.96 kg, 69.2 cm hip height) kept at the Hawk Conservancy Trust (Hants) for 23 years and trained to aggressively strike a rubber snake for public exhibition displays (Movie S1) (photo: Jason Shallcross). (B) Strike force impulse and contact duration were measured from 45 individual kicks in 14 trials measured over 2 recording days. (C) Peak forces, estimated by fitting a half-sine to data in (B), averaged 5.1 ± 0.9 bodyweights (195 ± 34 N, mean ± s.d.; Figure S1, Supplemental Information). (D) We modelled running dynamics and ground reaction forces using a spring-loaded inverted pendulum model, using the birds body mass, leg length and representative measurements of running gait (see Supplementary Experimental Procedures). Leg stiffness and initial conditions (velocity, body height and leg contact angle) of the model were optimized to match the measured running velocity, stride period and duty factor. The model-predicted peak forces and leg stiffness during running are unexceptional and comparable to those observed in ground birds [4].

using a portable force plate and synchronized high-speed video, both recording at 500 Hz. Peak forces were determined by fitting a half-sine to the directly measured impulse and duration (Figure 1C; Supplemental Information). Although from a limited sample of a single individual, these data provide the first direct measures of kicking strike biomechanics of the secretary bird.

We find that the peak force demands of secretary bird kicking strikes are remarkably high (Figure 1C), averaging 5.1 ± 0.9 body weights (195 ± 34 N, mean \pm s.d.). These forces exceed those typically experienced during moderate to high-speed locomotion (typically 2–3 bodyweights in Galliformes and Ratites) [4], and are comparable to peak forces in maximal leaping, which reach 5.3 bodyweights in helmeted guineafowl (Numidia meleagris), for example [6]. Peak forces during landing strikes of barn owls (Tyto alba) have been estimated to reach as much as 14.5 body weights [7]. However, these forces are applied as the entire body is rapidly decelerated from downward flight, involving a high momentum of the body centre of mass, powered by gravity. In contrast, in a kicking strike, the secretary bird rapidly accelerates the limb from a static standing position; therefore, the momentum subsequently lost in the decelerating strike impact must be powered directly by the limb muscles.

Current Biology Magazine

We further discovered that the kick-strikes involve exceptionally fast impacts, lasting only 15 ± 4.4 ms duration in contact (Figure 1B). Such rapid impact time precludes the involvement of proprioceptive feedback control within the contact period, especially considering the likely transmission delays caused by exceptional leg length. We suggest, therefore, that secretary bird hunting behavior must rely on visual targeting and feed-forward motor control within strike events, with opportunity to correct for missed strikes only in subsequent kicks. If so, kicking strikes of the secretary bird involve an unusually constrained control system, which could have interesting implications for the evolution of visual processing in these animals. Observation of head orientation during kick-strikes suggests an important role of visual targeting of foot placement preceding each kick event (Movie S1). The visual field of secretary birds is not known, but they are likely to demonstrate a large frontal binocular field with large vertical height - akin to other activehunting birds of prey - to allow precision striking of the foot [8].

Secretary birds have exceptionally long legs (Figure 1A) - more than twice that of an athletic ground bird of equivalent body mass [4] - which is widely assumed to represent selection for rapid foot-strikes during kickhunting [9]. The secretary bird's long legs can be attributed to unusually long tibiotarsus and tarsometarsus bones [9]. This morphology facilitates rapid foot velocities for hunting strikes, but also has important potential consequences for gait, due to the associated increased limb rotational inertia [9]. To further explore whether the unusually long-legged morphology of the secretary bird imposes constraints on running dynamics, we fit a spring-loaded-inverted-pendulum model to Madeleine's measured body mass, leg length and experimentally recorded running gait parameters (Figure 1D). We measured velocity, stride period, duty factor and leg angle swept during stance for three running strides at a velocity of $1.82 \pm 0.09 \text{ ms}^{-1}$ (relative velocity 0.70 ± 0.04). We used an optimisation algorithm to generate a simulated running gait matching

the measured gait kinematics. The model simulation yielded an estimate of effective leg stiffness, peak forces and force impulses typical of overground locomotion for the secretary bird (Figure 1D, see Supplemental Information). The modelpredicted peak forces and effective limb stiffness suggest that the bipedal running dynamics of these birds is unexceptional (Figure 1D), comparable to those measured in ground birds [4]. Additional data over a broad speed range would be needed to fully address whether the secretary bird's long legs influence the stride-length and stride-frequency relationships with speed, which could impact the metabolic energy cost of locomotion.

Many osteological similarities are shared between secretary birds and members of the extinct Phorusrhacidae ('terror birds') [10], which are thought to have also relied on the use of a kick hunting technique. The forces that are transferred from secretary birds during such hunting kicks, and the potential consequences for locomotion, will be of particular interest to scientists looking to reconstruct the feeding mechanisms of terror birds [10]. The findings here challenge the widely held notion that whole-body locomotor behaviors always place the greatest biomechanical demands on the legs, which can influence the assumptions used when reconstructing musculoskeletal biomechanics of extinct species.

ETHICS

Experimental protocols were approved by the Clinical Research and Ethical Review Board at the Royal Veterinary College and by the Hawk Conservancy Trust.

SUPPLEMENTAL INFORMATION

Supplemental Information including experimental procedures, one figure and one movie can be found with this article online at http://dx.doi.org/10.1016/j.cub.2015.12.004.

AUTHOR CONTRIBUTIONS

Conceptualization, S.J.P. and M.A.D.; methodology, S.J.P, C.P.M., E.L.S. and M.A.D.; formal analysis, M.A.D.; resources, C.P.M and M.A.D.; writing - original sraft, S.J.P. and M.A.D.; writing - review and editing, S.J.P, C.P.M., E.L.S. and M.A.D.

ACKNOWLEDGEMENTS

Mike Riley from the Hawk Conservancy Trust provided valuable assistance with animal handling. We thank Jeff Rankin and Joanne Gordon for useful discussions.

REFERENCES

- Patek, S.N., Korff, W.L., and Caldwell, R.L. (2004). Deadly strike mechanism of a mantis shrimp. Nature 428, 819–820.
- Biewener, A.A. (1989). Scaling body support in mammals: limb posture and muscle mechanics. Science 245, 45–48.
- 3. Daley, M.A. (2008). Running over uneven terrain is a no-brainer. Curr. Biol. 22, R1064–R1066.
- Birn-Jeffery, A.V., Hubicki, C.M., Blum, Y., Renjewski, D., Hurst, J.W., and Daley, M.A. (2014). Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain. J. Exp. Biol. 217, 3786–3796.
- Steyn, P. (1982). Birds of Prey of Southern Africa, Their Identification and Life Histories (Cape Town: David Philip).
- Henry, H.T., Ellerby, D.J., and Marsh, R.L. (2005). Performance of guinea fowl *Numida meleagris* during jumping requires storage and release of elastic energy. J. Exp. Biol. 208, 3293–3302.
- Usherwood, J.R., Sparkes, E.L., and Weller, R. (2014). Leap and strike kinetics of an acoustically 'hunting' barn owl (*Tyto alba*). J. Exp. Biol. *217*, 3002–3005.
- Martin, G.R., Portugal, S.J., and Murn, C.P. (2012). Visual fields, foraging and collision vulnerability in Gyps vultures. Ibis 154, 626–631.
- Maloiy, G.M., Alexander, R.M., Njau, R., and Jayes, A.S. (1979). Allometry of the legs of running birds. J. Zool. 187, 161–167.
- Ernesto-Blanco R., and Jones, W.W. (2005). Terror birds on the run: a mechanical model to estimate its maximum running speed. Proc. Roy. Soc. B. 272, 1769–1773.

¹School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK. ²Hawk Conservancy Trust, Sarson Lane, Weyhill, Andover, Hampshire SP11 8DY, UK. ³School of Biological Sciences, University of Reading, Berkshire RG6 6AS, UK. ⁴Structure and Motion Laboratory, Royal Veterinary College, University of London, Hawkshead Lane, Hertfordshire AL9 7TA, UK. *E-mail: Steve.Portuaal@rhul.ac.uk

The editors of Current Biology

welcome correspondence on any article in the journal, but reserve the right to reduce the length of any letter to be published. All Correspondence containing data or scientific argument will be refereed. Queries about articles for consideration in this format should be sent by e-mail to cbiol@current-biology.com