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We understand little about the energetic costs of flight in free-ranging birds, in part
because current techniques for estimating flight energetics in the wild are limited.
Accelerometry is known to estimate energy expenditure through body movement in ter-
restrial animals, once calibrated using a treadmill with chamber respirometry. The flight
equivalent, a wind tunnel with mask respirometry, is particularly difficult to instigate,
and has not been applied to calibrate accelerometry. We take the first steps in exploring
a novel method for calibrating accelerometers with flight energy expenditure. We col-
lected accelerometry data for Harris’s Hawks Parabuteo unicinctus flying to varying
heights up to 4.1 m over a small horizontal distance; the mechanical energy expended to
gain height can be estimated from physical first principles. The relationship between
accelerometry and mechanical energy expenditure was strong, and while a simple wing
flapping model confirmed that accelerometry is sensitive to both changes in wing beat
amplitude and frequency, the relationship was explained predominately by changes in
wing beat frequency, and less so by changes in amplitude. Our study provides initial,
positive evidence that accelerometry can be calibrated with body power using climbing
flights, potentially providing a basis for estimating flapping flight metabolic rate at least
in situations of altitude gain.

Keywords: dynamic body acceleration, energetics, Harris’s Hawk, wing beat amplitude, wing beat
frequency.

Volant birds can travel further and faster than ani-
mals employing other modes of locomotion. The
ability to fly underpins much of avian foraging and
migratory behaviour, yet powered flight is consid-
ered to require considerable energy expenditure
(Schmidt-Nielsen 1972, Nudds & Bryant 2000,
Piersma 2011). Quantifying those costs is therefore
essential to our understanding of bird biology. At
present, however, we know very little about the
true costs of flapping flight in unrestrained birds in
the wild (Elliott 2016, Hicks et al. 2017),

particularly beyond cases of steady-state flight
(Pennycuick 2008).

Although wind tunnel experiments have proved
invaluable for interrogating various aspects of flight
biology (Engel et al. 2010), training birds to main-
tain stationary flight in a current of air (Ward et al.
2002, Sapir & Dudley 2012) is difficult (Welch
2011), and habituating them to wearing a
respirometry mask at the same time in order to
estimate energy expenditure is an additional prob-
lem. Furthermore, the veracity of measurements
taken during wind tunnel respirometry has been
questioned (Engel et al. 2010). The mask and asso-
ciated tubing imposes additional weight and drag
on the bird, the wind tunnel can elicit boundary
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effects (Rayner 1994), and captive animals are
potentially less physically fit than their wild con-
temporaries (Schwitzer & Kaumanns 2001). These
issues may explain inconsistencies between wind
tunnel estimates of flight effort and field-based
estimates (Liechti & Bruderer 2002). For example,
the heart rate of wild geese during flight tends to
be low (Bishop et al. 2015) compared with that of
geese during wind tunnel experiments (Ward et al.
2002). Furthermore, the tethering effect of the
mask limits the bird’s freedom of movement,
which may also serve to increase its energy costs,
and restricts investigation to scenarios of steady-
state, uni-directional flight. Other approaches for
measuring the energetic costs of flight include
using energy models in conjunction with high-
speed kinematics (Askew & Ellerby 2007) but this
is a further example of laboratory measurements,
which may yield quite different results for free-fly-
ing birds in their natural environment. Many eco-
logical and behavioural questions can only be
resolved in a natural setting.

One of the most promising approaches for inves-
tigating energy expenditure during flight in wild ani-
mals is to attach a small data logger to the subject
animal recording a proxy of energy expenditure.
Calibrating the proxy with energy expenditure in
the laboratory enables quantified estimates of
energy expenditure to be calculated from measures
of the proxy recorded in the field (Sapir et al.
2010). For example, calibrations between heart rate
and energy expenditure obtained for two species of
geese (Ward et al. 2002) were applied to heart rate
recordings of Bar-headed Geese Anser indicus on
migration from Mongolia to India through the
Himalayas, estimating energetic savings for these
birds from flying close to the ground compared with
ascending progressively across the mountain range
(Bishop et al. 2015). However, applying such
‘biologging’ to quantify energy expenditure in birds
while flying is in its infancy (Guillemette et al.
2012, Elliott et al. 2013, 2014, Weimerskirch et al.
2016) with few proxy calibrations available. This, at
least in part, is because calibrating energetics proxies
for flying birds is very difficult, given the logistics,
for example, of wind tunnel respirometry.

Accelerometers are used as biologging devices
that record the acceleration of the body of the ani-
mal. Both in theory (Gleiss et al. 2011) and in prac-
tice (Wilson et al. 2006), recordings from
accelerometers attached to a central point on an
animal’s body relate well to the levels of movement

of that animal, and in turn to its energy expenditure
during periods of activity. A now commonly used
derivative of accelerometry data used as a proxy for
energy expenditure is termed dynamic body accel-
eration (DBA) (Halsey et al. 2011a,b, Qasem et al.
2012). During flapping flight, acceleration of the
animal’s body, and thus DBA, is affected by varia-
tion in flapping behaviour (Halsey et al. 2009a,b,
Spivey & Bishop 2013, Bishop et al. 2015, Weimer-
skirch et al. 2016), which is described predomi-
nantly by wing beat frequency, wing beat
amplitude or a combination of the two (Rayner
1999). Strong relationships between the rate of
energy expenditure and DBA have been found in a
diversity of cursorial birds such as Red Junglefowl
(chickens) Gallus gallus, Great Cormorants Pha-
lacrocorax carbo and Macaroni Penguins Eudyptes
chrysolophus (Wilson et al. 2006, Green et al. 2009,
Halsey et al. 2009a,b). Yet to date there has been
no empirical calibration of accelerometry with
energy expenditure for birds during flight. The
three-dimensional nature of bird flight means that
the relationship between DBA and energy expendi-
ture cannot be easily predicted from simple theo-
retical considerations: birds could switch between
different flapping modes as they fly on different
slopes, leading to effects on DBA that are difficult
to predict. Our study takes the first steps to address
this. We provide the first experimental relationship
between accelerometry (as DBA) and rate of
energy expenditure (as climb power is associated
with the gain in potential energy) in a volant ani-
mal, by using variation in climbing slope during free
flights to enable climb power to be estimated from
physical first principles. These experiments also
enabled us to investigate what aspects of wing kine-
matics (e.g. increased flapping frequency or flap-
ping amplitude) drive power output in this
particular flight scenario and how effectively DBA
can describe these kinematics.

We fitted Harris’s Hawks Parabuteo unicinctus
with accelerometers and encouraged them to under-
take short flapping flights that varied in the height
gained between the two falconers. The extra energy
(climb power) expended by the bird in achieving
these various heights was calculated from physical
first principles as the product of the mass of the
bird, gravitational acceleration, and the rate of
increase in height (Askew et al. 2001, Berg & Biew-
ener 2008). This enabled us to test for and investi-
gate relationships between energy expenditure (as
climb power) and DBA in birds without heavy
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logistical burdens, outside the laboratory, flying
freely and without restricting the animals by oblig-
ing them to wear a respirometry mask etc. We fur-
ther explored our findings by investigating the
relationships between DBA and bird kinematics
both empirically and using simple wing flapping
models based on sinusoidal waves (Spivey & Bishop
2013); the modelling helps to clarify some common
misunderstandings about how cyclical body move-
ment impacts measures of body acceleration.

METHODS

Experimental set-up

We collected data from five (one male and four
female) Harris’s Hawks weighing between 0.84 and
1.03 kg at the Hawk Conservancy Trust (HCT) in
Andover (UK). Data were collected in the summer
and autumn of 2016, with approval from the ethics
committee of the University of Roehampton.

We encouraged the hawks to fly to six different
heights (range: 0–4.1 m; Fig. 1, Table 1) while cov-
ering only a small horizontal distance (4.1 m). Lured
by morsels of chicken (weighing 1–2 g), the birds

flew back and forth from a falconer on the ground to
a falconer standing at different heights on flights of
steps up to a balcony. Their body mass therefore
increased slightly with each flight; we accounted for
this in our analyses by assuming that each piece of
food weighed 1.5 g. Each height condition was ran-
domized and was repeated approximately three
times per bird. Wind speed was measured with an
anemometer and never exceeded 0.3 m/s, so we con-
sidered wind to be negligible in our experiment.

We placed a small accelerometer (9.3 g, ~1% of
body mass; GCDC USB accelerometer X16-4) on
the lower section of the Harris’s hawk’s back,
towards the rump where it would not interfere
with wing movement (Fig. 2). The accelerometer
was set to record at 50 Hz (approximately 10-fold
the wing beat frequency of Harris’s Hawks). Simi-
lar to some previous studies of bird flight power
and kinematics (Pennycuick et al. 1989, Askew
et al. 2001, Berg & Biewener 2008), flight dura-
tions were short, averaging 1.7 s (�1 sd: 0.3).

Video recordings

We video-recorded the flight of the birds with a
Nikon Coolpix AW110 camera, hand-held by a
researcher standing on the ground, perpendicular
to the bird’s trajectory. The video was used subse-
quently to check flight durations and times, syn-
chronize the flight times with the accelerometry
data, and note any aberrant behaviours by the
birds during the flights (e.g. a bird not flying to
the target); those flights (n = 6 from three birds)
were removed prior to analysis. We used the pro-
gram IGOR Pro (Wavemetrics Inc., Portland, OR,
USA, 2000, version 6.3.5) with the Ethographer
package (Sakamoto et al. 2009) in concert with
the video footage to extract the acceleration traces
representing each flight.

Estimating climb power

From the height gained by a hawk during each
flight (Table 1), along with the duration of the
flight and the mass of the bird, mean climb power
during the flight can be calculated by:

Figure 1. Schematic diagram of the experimental setup.
(H1 = 0 m height gain; H6 = 4.5 m height gain; see main text
for further details). For each height condition the bird flew from
falconer 1 to falconer 2.

Climb power ðJ s�1Þ ¼ mass (kg)� gravitational acceleration ð9:81m s�2Þ � height gained (m)
flight duration (s)
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Accelerometry data analysis

Accelerometers measure both dynamic (body
movement) and static acceleration (gravity) (Gleiss
et al. 2011); the tag model we used recorded
acceleration along three orthogonal axes (heave,
surge and sway) measured in absolute g
(1 g = 9.81 m s�2). Thus, the acceleration of the
bird’s body due to the movement of its wings
could be determined by recording the acceleration
experienced by the data logger attached to a fixed
point on the body, such as the lower back, and
then from those data by extracting an approxima-
tion of absolute g due only to dynamic acceleration
(Gleiss et al. 2011, Halsey et al. 2011a,b). This
extraction was achieved in our study by removing
an approximation of the static acceleration calcu-
lated as the mean of each accelerometry axis over
the duration of the flight, similar to employing a
running mean (Shepard et al. 2008). Preliminary

analysis showed that we found a stable overall
dynamic body acceleration (hereafter DBA) within
the average flight duration of the hawk. The
resulting absolute dynamic values were then
summed to produce the derivation termed DBA.

Calculating flapping kinematics from the
accelerometry data

All the flapping analyses were implemented in
Matlab v.7.9.0.529 (The Mathworks, Inc., Natick,
MA, USA). We projected the accelerometer signal
along one dimension. This dimension was defined
as the major flapping axis of the Harris’s Hawk,
determined independently for each flight through
principal component analysis of the three-dimen-
sional accelerometer recordings. Next, we applied
a cubic spline interpolation of this accelerometer
signal with a temporal resolution of 250 fixes per
second (five times the original resolution of the

Figure 2. Attachment (left) and location (right) of the accelerometer, placed on the back of the Harris’s Hawk using surgical tape.
The accelerometer was protected from rain and dust by a thin plastic film.

Table 1. Height gain and flight distance represented by each experimental condition. Average height varied slightly within each con-
dition due to slight variations in the stance adopted by the two falconers.

Flight condition
Mean height gain
(and range) (m)

Mean flight distance
(and range) (m)

Mean flight
duration and range (s)

No. of birds
(and no. of flights)

H1 0 4.1 1.6 (1.2–2.2) 5 (14)
H2 1.3 (1.2–1.6) 4.3 (4.3–4.4) 1.6 (1.2–2.4) 5 (17)
H3 1.8 (1.6–2.0) 4.5 (4.4–4.6) 1.6 (1.3–2.6) 5 (19)
H4 2.5 (2.3–2.9) 4.8 (4.7–5.0) 1.7 (1.3–2.2) 4 (13)
H5 3.8 (3.5–4.2) 5.6 (5.4–5.9) 1.9 (1.5–2.5) 4 (12)
H6 4.1 (3.9–4.3) 5.8 (5.7–5.9) 2.1 (1.7–2.5) 5 (13)
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data). This step was included because the tempo-
ral resolution for detecting wing beat frequency is
limited by the temporal discretization of the data;
however, the accelerometer signal itself carries suf-
ficient information for a much more accurate esti-
mation because the signal is repeated over
multiple flapping cycles. This information was
integrated in the subsequent steps of analysis.

We estimated wing beat frequency by comput-
ing a temporal autocorrelation of the interpolated
accelerometer signal and by detecting the time lag
that corresponded to the second highest peak in
the autocorrelation function (the first highest peak
is the trivial autocorrelation maximum at zero
delay). This time lag gave the time period T of
one flapping cycle, the wing beat frequency being
1/T. In four flights of one bird, the second highest
peak in the autocorrelation function was of similar
height to the third highest peak and its position
indicated incorrect values of wing beat frequency
(higher than 8 Hz or lower than 4 Hz, clearly dif-
ferent from what we could observe in the video
footage). For these four flights, we manually
forced selection of the third highest peak.

Acceleration amplitude along the major flapping
axis is a measure of the amplitude of acceleration of
the bird’s body (Usherwood et al. 2011, Spivey &
Bishop 2013), which in turn is assumed to result
predominantly from wing flapping. Acceleration
amplitude was estimated directly from the local
maxima and local minima of the interpolated
accelerometer signal. As the accelerometer signal
had multiple local maxima and minima, some of
which were determined by noise (or by higher har-
monics of wing movements), we limited the analy-
sis to local maxima and minima that were also
global maxima or minima within a time window of
70% of one flapping cycle. As an aggregate measure
of amplitude of acceleration during the flap cycles
over the entire flight, we kept the value that corre-
sponded to the 80th percentile of the absolute
amplitude of local maxima and minima, under the
assumption that this would be only minimally sensi-
tive to extreme variations of amplitude associated
with take-off and landing. Acceleration amplitude
was used to estimate the movement amplitude of
the bird’s body (hereafter termed ‘body movement
amplitude’, given in cm) by considering the body to
fluctuate over time following a pure sine wave (Spi-
vey & Bishop 2013). Body movement amplitude is
assumed to be proportional to wing beat amplitude
and thus an indirect measure of it (Hedrick et al.

2004, Usherwood et al. 2011, Taylor et al. 2017)
(the Supporting Information includes Matlab code
to calculate wing beat amplitude and body move-
ment amplitude).

From the measured values of DBA we calculated
an estimated measure of ‘body power’, or the power
produced by flapping. Under relatively well-
supported assumptions of sinusoidal flapping, body
power is proportional to the amplitude of the
accelerometer signal and inversely proportional to
the squared wing-beat frequency (Spivey & Bishop
2013), so here we defined body power simply as
body power = DBA2/WBF (this is analogous to
other definitions of body power based on RMS (root
mean square) contrast of the accelerometer signal:
RMS contrast and DBA are both proportional to the
amplitude of the sinusoidal flapping signal, body
power = RMS2/WBF).WBF is wing beat frequency.

Statistical analyses

Statistical analyses focused on general linear models
implemented in the programming environment R
3.4.0 (R Core Team 2013), using the lme4 package.
In different models, DBA (g), climb power (J s�1)
and climb energy per wingbeat (J) were the outcome
variables, with body movement amplitude (cm),
wing beat frequency (Hz), climb power or body
power (J s�1) as single predictor variables. All mod-
els included bird ID as a random factor, allowing
slope intercept and gradient to differ for each bird.
We then performed a cross-validation analysis to
quantify the predictive validity of our model cali-
brating DBA with climb power. Using a jackknife
approach, we simulated the scenario of estimating
climb power from measures of DBA obtained from a
new individual. We excluded one bird from the data-
set in generating the relationship between climb
power and DBA, and then used that relationship to
compare climb power against DBA-predicted climb
power, for 10 randomly selected values of DBA.
Mean absolute and mean algebraic percentage error
was calculated for these 10 samples. This process
was repeated for all five birds and overall means were
then calculated.

R2 values for mixed effects models were calcu-
lated following the method of Nakagawa and
Schielzeth (2013) using the MuMin package.
Because the P-value is typically highly imprecise,
here we consider it to be only a tentative indica-
tion of the strength of evidence for observed pat-
terns in the data (Fisher 1959, Boos & Stefanski
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2011, Halsey et al. 2015). To enhance interpreta-
tion of the P-value, we have supplemented report-
ing the P-values with further information following
the three key recommendations of the American
Statistical Association (Wasserstein & Lazar 2016),
further explained in Altman and Krzywinski
(2017), which enable assessment of the strength of
evidence for the falsehood of the null hypothesis.
First, we provided estimates of the false discovery
rates associated with each null hypothesis – the
expected proportion of the rejected null hypotheses
that are false rejections. These were calculated
based on predicted statistical power of 80% and the
heuristic for low-throughput testing recommended
by Altman and Krzywinski (2017) to predict the
proportion of tests that are truly null: 50% for pri-
mary research questions and 75% for secondary
research questions. Secondly, we calculated the
upper bound for the Bayes factor (Sellke et al.
2001, Boos & Stefanski 2011) – the largest possible
Bayes factor over any (reasonable) choice of the
prior distribution for the alternative hypothesis.
The value represents the ratio of average likelihoods
under the alternative and null hypotheses, i.e. a
quantification of the extent to which the alternative
hypothesis (that the effect size is not null, i.e. not
0) is more likely. Thirdly, all our data figures
include 95% confidence intervals, both standard
and bootstrapped (Loftus 1993, Lavine 2014).

RESULTS

Empirical data analysis

Five Harris’s Hawks undertook a total of 88 flights
that were included in the analyses. Cleveland plots
indicated no clear outliers in the dataset. The
observations to covariates ratio was never lower
than 24 for the models constructed, which is
acceptable (Zuur et al. 2013). There was no rela-
tionship between the Pearson residuals and the fit-
ted values from this study’s main model: DBA ~
climb power + (bird_ID). None of the Cook’s dis-
tances was an outlier. The relationship between
observed data and fitted data for this model was
approximately unitary. Plots of Pearson residuals
against each model covariate in this study’s analy-
ses did not indicate any obvious non-linearity (48).

To generate relationships between the rate of
energy expenditure and DBA, we plotted mean
DBA against estimated climb power (Fig. 3); the

plot indicated that they correlate positively. The
R2 values for climb power regressed against DBA
for each bird separately ranged between 0.58 and
0.80. A linear mixed model to predict DBA from
climb power, including bird identity as a random
factor, indicated a strong relationship (Table 2).
To quantify the predictive accuracy of the rela-
tionship between climb power and DBA, we per-
formed a cross-validation analysis. Overall mean
absolute error was 19.22 � 1.16% (range of mean
absolute error: 0.22–68.08%), and overall mean
algebraic error was �4.00 � 1.96% (range of mean
algebraic error: �68.08 to 42.41%).

Consequently, we explored the relationships
between key aspects of wing kinematics and climb
power, and how effectively DBA described those
wing kinematics (Table 2). The flight kinematic
variables we investigated at this point were body
movement amplitude (a proxy for wing beat ampli-
tude) and wing beat frequency. DBA was related
statistically significantly but not strongly to body
movement amplitude (Fig. 4a) but more strongly
to wing beat frequency (Fig. 4b). Similarly, climb-
ing power was related statistically significantly but

2
3

4
5

6
7

0 10 20 30
Climb power (J/s)

D
B

A
 (g

)

Figure 3. Regressions of mean dynamic body acceleration
(DBA) against mean climb power during short flights by Har-
ris’s Hawks (n = 5). The plotted data represent single values
(n = 88), colour- and shape-coded to identify each bird. Col-
our- and style-coded lines of best fit are shown. NB, one best
fit line (green, long dash) substantially obscures another (olive,
short dash). Bird 1, red full and circle symbols, R2 = 0.80. Bird
2, olive short dash and triangle symbols, R2 = 0.58. Bird 3,
green long dash and squared symbols, R2 = 0.64. Bird 4, blue
wide dash and plus symbols, R2 = 0.70. Bird 5, mauve stip-
pled and cross squared symbols, R2 = 0.66.
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not strongly to body movement amplitude
(Fig. 4c), but more strongly to wing beat frequency
(Fig. 4d). Consequently, there was a fairly strong
positive relationship between climb energy per
wing beat and climb power (Fig. 4e). Finally, climb
power was regressed against DBA2/WBF, which is
the theoretical relationship derived by Spivey and
Bishop (2013) for body power perceived by the
body-mounted accelerometer (Fig. 4f), but the
relationship had a weaker correlation (marginal R2)
than that for DBA, or even wing beat frequency,
alone.

Modelled data analysis

Superficially, one might conclude that changes in
wing beat frequency will not be recognized by
changes in DBA (or related measures such as
RMS) because DBA depends only on the ampli-
tude of the acceleration profile and not on its fre-
quency (Fig. 5). The total DBA of a flapping cycle
corresponded to the area shaded in grey in Fig-
ure 5a. If the bird produced an identical
accelerometer profile, but flapped at double the
frequency (Fig. 5b), the total DBA of a flap cycle
would be reduced to half the original, but there
would now be two identical flapping cycles per
unit of time, so that average DBA calculated
across multiple flap cycles would be identical (see
Appendix S1 for a proof).

However, it would be wrong to conclude that
the profile presented in Figure 5b would result
from the bird increasing its wing beat frequency

while maintaining a constant wing beat ampli-
tude. There is a crucial and fundamental distinc-
tion to be made between the amplitude of the
signal in the recorded acceleration trace (g) and
the amplitude of the bird’s wing flaps (cm). The
amplitude of the accelerometer profile carries
information about both the amplitude and the
frequency at which the bird flaps its wings. A lar-
ger flapping amplitude for a given wing beat fre-
quency registers higher acceleration values and,
for a given flapping amplitude, a higher wing
beat frequency will register higher acceleration
values. Simply put, a flapping wing must speed
up and slow down more rapidly if it is moving
further per unit time or flapping more frequently.
Thus, even if inspection of the profile of the
bird’s body movements in centimetres (in reac-
tion to its wing beats) does not show any change
in gain in response to a change in its wing beat
frequency (Fig. 6a), DBA derived from an
accelerometer installed on the bird’s back should
nonetheless recognize this variation in flapping
behaviour (Fig. 6b).

DISCUSSION

During flapping flight, birds must expend energy
to gain height. We took advantage of this to gener-
ate relationships between the output of an
accelerometer and the rate of mechanical energy
expenditure of volant birds by installing the
accelerometer to the back of Harris’s Hawks while
they undertook ascending flights.

Table 2. Model outputs, accounting for repeated measures within each bird, investigating the relationships between dynamic body
acceleration (DBA, g), climb power (J s�1), wing beat frequency (WBF, Hz), body movement amplitude (BMA, cm), climb energy per
wingbeat (energy per wingbeat, J) and body power (J s�1). Marginal R2 describes the proportion of variance explained by the fixed
factor(s) alone; Conditional R2 describes the proportion of variance explained by both the fixed factor(s) and the random factor (bird
ID). eFDR, estimated false discovery rate. The Bayes factor bound calculates the upper bound of the Bayes factor based on the
reported P-value, and indicates the ratio of the likelihood that the alternative hypothesis and the likelihood that the null hypothesis is
true. See the main text for further details.

Associated figure Model Slope (�se) Marginal R2 Conditional R2 P-value eFDR (%)
Bayes

factor bound

Fig. 3 DBA ~ climb power 0.092 � 0.009 0.54 0.64 <0.001 0.12 53
Fig. 4a DBA ~ BMA 0.28 � 0.067 0.17 0.17 <0.001 0.37 53
Fig. 4b DBA ~ WBF 1.88 � 0.27 0.38 0.52 <0.001 0.37 53
Fig. 4c Climb power ~ BMA 1.46 � 0.651 0.06 0.19 0.02 6.98 5
Fig. 4d Climb power ~ WBF 17.8 � 2.0 0.48 0.64 <0.001 0.37 53
Fig. 4e Energy per wingbeat ~ climb

power
0.173 � 0.012 0.61 0.84 <0.001 0.37 53

Fig. 4f Power ~ climb power 6.71 � 0.727 0.32 0.62 <0.001 0.37 53
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The relationship between climb power,
DBA and wing kinematics

Although our experimental design induced the
birds to ascend to different heights and thus
expend different total amounts of energy, this did
not ensure that they would vary their mean climb

power. Fortunately, however, climb power did
vary, providing variation that might covary with
DBA. DBA derived from the recorded accelerome-
try data during these flights related to climb power
positively and strongly (Fig. 3), characterized by
an overall mean absolute prediction error of less
than 20%, and overall mean algebraic error (giving

2 4 6 8 10

1
2

3
4

5
6

7

Body movement amplitude (cm)

D
B

A
 (g

)

Fitted line
Confidence interval
Bootstrapped CI

(a)

4.0 4.5 5.0 5.5 6.0

0
1

2
3

4
5

6

Wing beat frequency (Hz)

D
B

A
 (g

)

(b)

2 4 6 8 10

0
5

10
15

20
25

30

Body movement amplitude (cm)

C
lim

b 
po

w
er

 (J
/s

)

(c)

4.0 4.5 5.0 5.5 6.0

0
5

10
15

20
25

30

Wing beat frequency (Hz)

C
lim

b 
po

w
er

 (J
/s

)

(d)

0 5 10 15 20 25 30

0
1

2
3

4
5

6

Climb power (J/s)

C
lim

b 
en

er
gy

 p
er

 w
in

gb
ea

t (
J)

(e)

0 1 2 3 4 5

0
5

10
15

20
25

30

Body power (J/s)

C
lim

b 
po

w
er

 (J
/s

)

(f)

Figure 4. Relationships between flight kinematics, dynamic body acceleration (DBA) and estimates of climb power during short
flights by five Harris’s Hawks (n = 88). In each panel, the black line represents the line of best fit returned from a linear mixed model
that included bird identity as a random factor. The grey dashed lines indicate the 95% confidence interval around the line of best fit
derived from standard calculations, and the grey stippled lines indicate the 95% confidence intervals derived from a bootstrap proce-
dure based on 200 iterations.
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an indication of the predictive error if mean climb
power across multiple birds was estimated) of
�4%. This augurs well for the future use of
accelerometers to estimate energy expenditure in
volant birds.

Variation in DBA (due to variation in climb
power) was explained more by changes in wing
beat frequency (Fig. 4b) than by changes in wing
beat amplitude (measured in terms of body move-
ment amplitude; Fig. 4a). The birds’ increase in
wing beat frequency to increase power was clear

(Fig. 4d) despite the variation in wing beat fre-
quency being small (across all birds typically rang-
ing from about 4.7 to about 5.8 Hz). Our wing
flap models demonstrated that DBA can be sensi-
tive to both changes in body movement amplitude
and wing beat frequency (Fig. 6); it appears that
the Harris’s Hawks enacted relatively small
changes in wing beat frequency in order to gener-
ate relatively large changes in climb power. This
has been quantified once before in Bar-headed
Geese (Bishop et al. 2015). Small increases in wing
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Figure 5. The average dynamic body acceleration (DBA) per unit time depends only on the amplitude of the accelerometer signal
and not on its frequency. (a) Idealized flapping profile recorded by the accelerometer. The average DBA of a flapping cycle corre-
sponds to the area of the shaded region, divided by the length of the flapping cycle (in this example 0.2 s). (b) Accelerometer profile
identical to the one in (a), but at double the frequency. The shaded area in each cycle is now only half the area in (a), but there are
now twice as many cycles per unit time, so that the average DBA is unchanged.

0 0.1 0.2 0.3
−10

−5

0

5

10

Time (s)

B
od

y 
po

si
tio

n 
(c

m
)

(a)

0 0.1 0.2 0.3
−10

−5

0

5

10

Time (s)

A
cc

el
er

om
et

er
 s

ig
na

l (
g)

(b)

Figure 6. Modelled relationships between body movement, acceleration amplitude and wing beat frequency. (a) Two hypothetical
flapping profiles, here exemplified by sinusoidal curves, with exactly the same amplitude (in cm of body oscillations) but different fre-
quencies (black curve: 5.5 Hz; red dashed curve: 4.125 Hz). The body movements exemplified in (a) produce acceleration profiles
(in units of g) with identical frequencies (b), but the amplitude has changed – faster body movements produce higher acceleration
amplitudes for the same body movement amplitudes.
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beat frequency might be expected to be associated
with relatively high power costs given that, for
horizontal steady flight, power requirement should
be proportional to wing beat frequency cubed
(Lilienthal 2001). However, the wing beat fre-
quency of the Harris’s Hawks leaves quite a lot of
variation in DBA and climb power unexplained,
and a regression of climb energy expended per
wing beat against climb power, while strong,
includes a fair amount of variability (Fig. 4e). Our
wing flap models indicated that DBA is likely to
be somewhat sensitive to changes in wing beat fre-
quency, leaving the possibility that the birds made
other changes to their flight kinematics over and
above wing beat frequency and wing beat ampli-
tude to change their climb power. Similarly, Fri-
gatebirds Fregata spp. hold wing beat frequency
fairly constant but the heart rate per wing beat (a
proxy of power output per wing beat) varies sub-
stantially during the course of a flight (Weimer-
skirch et al. 2016). In both these cases, one
possibility is that the birds change stroke plane
angle, as has been reported in pigeons during
short, height-gaining flights where power output
per wing beat was higher when the required flight
angle (and hence predicted power) was greater
(Berg & Biewener 2008).

The calculated mean maximum climb power
exhibited by the Harris’s Hawks during flights in
the present study was about 25 J s�1, which is
similar to that reported for 2 s of climbing flights
by the same species in an earlier study (Penny-
cuick et al. 1989; their Fig. 7). This is, of course,
only a part of the total power costs of flight for
the bird, which include muscle contractions of the
wings and other body parts, the costs to overcome
drag and basic lift, and basal metabolic rate. For
example, during flight a bird’s basal metabolic rate
could constitute 4–10% of its total metabolic costs
(Nudds & Bryant 2000, Piersma 2011), and flight
muscle efficiency is typically less than 20% (Ray-
ner 1999). In reality, total power during a flight is
likely to be many times higher than calculated
climb power, and could vary with mechanical
power (Rayner 1999, Pennycuick 2008, Engel
et al. 2010). The gross energy costs for a human to
jump horizontally is around eight-fold greater than
the energy expenditure calculated from physical
first principles (Halsey et al. 2016). Similarly, the
gross energy costs to ascend and descend a ladder
are around 13-fold greater (Halsey et al. 2016).
Nudds and Bryant (2000) reported strong

interspecific correlations between gross power out-
put and body mass during flight in birds based on
a literature review of empirical studies. For short
flights, their relationship predicted gross power to
be 250 J s�1 for a 1-kg bird, which is about 10
times the maximum mean climb power exhibited
by the hawks in the current study. It should be
borne in mind that shorter flights are particularly
energetically demanding due to take-off costs
(Nudds & Bryant 2000) and the higher power
costs associated with slower flight speeds (Engel
et al. 2010). The relationship between DBA and
climb power could be a valuable platform for esti-
mating flight metabolic rate, as our understanding
of a bird’s internal power costs becomes clearer;
even without estimates of internal power costs,
such relationship should reflect relative changes in
energy expenditure.

The precise mathematical relationship between
amplitude of body movement and accelerometer
signal can be derived as follows. Consider the case
of a bird which has flapping described by a pure
sine wave, such that the z position of its body (to
which the accelerometer is attached) fluctuates
over time from a minimum height �B to a maxi-
mum height +B, with period T. In this case we
have z(t) = B sin(xt), where we used x ¼ ð2p=TÞ
to represent the angular velocity and simplify the
notation. The accelerometer does not directly
record the bird’s body position at any given time t,
z(t), but simply its acceleration, that is, the second
derivative of body position. Indicating this acceler-
ation with a capital Z(t) we have:

ZðtÞ ¼ d2z
dt2

¼ Bx2sinðxtÞ

Importantly, the accelerometer profile describes
a sine wave, with the same period or frequency as
the body (the sin(xt) part is identical in the two
equations), but where the amplitude has now
changed from B (a function of body movement
amplitude only) to Bx2 (a function of both body
movement amplitude and wing beat frequency).

Under these assumptions, we can directly calcu-
late the amplitude of body movements (cm) from
the amplitude and frequency of flapping recorded by
the accelerometer. For example, in our data we have
typical values of accelerometer amplitude A � 5 g,
or A = 5 9 9.81 m s�2, and T � 0.2 s, from which
x = 2 9 p/0.2 s�1 and B = A/x2 = 5 9 9.81/(2 9

p/0.2)2 m = 0.05 m = 5 cm (see also Spivey &
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Bishop 2013 for a more accurate and complete anal-
ysis of the sinusoidal model).

Real birds are unlikely to flap with a perfect
sinusoidal profile. However, as long as the flapping
profile is periodic, it can be described as the sum
of multiple sine functions by Fourier series approx-
imation, and the same mathematical reasoning
above holds independently for each of the har-
monics.

Improving the DBA–power relationships

Our experiments included sources of potential
error that could increase noise in the relationship
reported. Defining and discerning the start and
end of each flight is an imperfect endeavour,
resulting in some degree of inconsistency and inac-
curacy in measuring flight duration and selecting
the associated accelerometry trace. The exact
height gained by a bird was also subject to error
due to variation within each height condition of
the exact body postures and hand placements of
the falconers, although most of this variation was
accounted for by inspecting the video footage.
Because of the short duration of the flights, varia-
tion in how take-off and landing were incorporated
into calculations for each flight could instigate con-
siderable noise in the reported relationships. We
investigated whether removing the start and end
of the accelerometry trace for each flight improved
the relationship specifically between DBA and
climb power. We progressively shortened the
analysed flights by 0.1-s intervals at both ends
simultaneously (up to 0.3 s at each end) and
found that this tended to slightly weaken the rela-
tionship. This process therefore provided no evi-
dence that our assessment of the flight start- and
end-points was inaccurate. If the birds could be
trained to undertake flights incorporating greater
height gain while maintaining the short horizontal
flight distance, this might serve to improve the
DBA–power relationship, unless the birds choose
to maintain a more consistent power output
between height conditions for extended flights of
this type. We were able to position the logger on
the back at a consistent point within and between
individual birds, which is important to reduce
noise-based variation in the relationships of climb
power, DBA and flight kinematics between birds.
The results of the present study have confirmed
that DBA depends partly on body movement
amplitude (Sapir et al. 2010, Bishop et al. 2015),

which in turn will depend on logger positioning
since differing locations may influence the degree
of oscillation experienced by the logger. Thus, it is
possible that certain logger positions return stron-
ger predictive relationships between climb power
and DBA or body movement amplitude than
others (Halsey et al. 2008).

Our data indicate considerable variation in the
relationship between DBA and climb power
among individuals (Fig. 3). Such variation in
energy-proxy relationships among individuals is
typical (see Halsey & White 2010, Green 2011,
Halsey et al. 2011a,b) and is ripe for investigation
with detailed kinematic data. Interindividual vari-
ability can be recognized statistically in the errors
associated with estimates of energy expenditure at
the group level (Green et al. 2003, Green 2011,
Lyons et al. 2013), where mean values for the
group tend to be accurate (e.g. Halsey et al.
2007).

The future of accelerometry to
investigate flight energetics

We need ways to estimate energy expenditure in
free-flying birds and other volant animals at high
resolution. Non-invasive instrumentation of data
loggers is currently the most tractable option
(although surgical implants may be preferential for
long-term deployments; White et al. 2013).
Researchers have only just begun to apply
accelerometry measurements to estimate the
energy expenditure of flapping flight. Bishop et al.
(2015) showed that in Bar-headed Geese migrat-
ing through the Himalayas, variations in heart rate
and accelerometry closely track each other (their
fig. 1). Given that heart rate correlates with the
rate of oxygen consumption in this species
(Groscolas et al. 2000), we can reasonably con-
clude that accelerometry can predict the power
costs of flapping flight, at least in geese. Heart rate
also correlates with accelerometry metrics in air-
borne Griffon Vultures Gyps fulvus (Duriez et al.
2014), and Hicks et al. (2017) demonstrated that
accelerometry relates to power output in European
Shags Phalacrocorax aristotelis. The current study
supports these conclusions, this time providing
direct evidence of a relationship between DBA
and mechanical power, the latter derived from first
principle calculations. Further work is required to
produce calibrations for application in the field. In
situations where birds undertake extended periods
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of ascending flapping flight (see Clarke et al. 2007,
Bishop et al. 2015), which may have an important
effect on their energy stores or fatigue, the
approach presented in the current study can be
particularly valuable.
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Appendix S1. DBA only depends on the ampli-
tude of the accelerometer signal and not on its fre-
quency.
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